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ABSTRACT: Monte Carlo methods have become the gold standard for
investigating the properties of light transport in turbid media due to their simple
conceptual picture and quantitative agreement with experiment. However, these
approaches are limited to the study of linear effects. In this work, a model capable
of efficiently and accurately simulating stimulated Raman scattering in a turbid
environment is presented for the first time. The method is validated using both
analytical calculations and experimental data. These results will allow for a deeper
understanding of nonlinear light propagation in a turbid medium and will be
indispensable in understanding the processes involved in random Raman lasing.
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The propagation of light in the presence of scattering is a
long-standing problem of fundamental importance. Every-

thing from light-based biomedical imaging techniques to Earth-
based telescopes are intimately effected by the scattering of
light. The multiple elastic scattering which takes place in
optically thick turbid media is mathematically intractable. From
the viewpoint of Maxwell’s equations, it requires knowledge of
the location and shape of each individual scatterer. Ultimately,
this would involve solving Maxwell’s equations with tremen-
dously complicated boundary conditions, making the problem
virtually impossible. In contrast, Monte Carlo simulations
describe light as discrete particles that scatter in random
directions at random intervals. These discrete particles are
referred to as photon packets to distinguish them from the
physical quantum of light and indicate that a single photon
packet can represent many more than a single physical photon.
Monte Carlo simulations allow very complex dynamics to be
simulated with only the knowledge of macroscopic physical
properties of the medium. This allows anisotropic elastic
scattering to be described using only two bulk material
properties, the scattering coefficient and the average value of
the scattering angle.1−4 Historically, the major limitation in the
application of Monte Carlo simulations has been their
computationally intensive nature. Advances in computing
power over the years, and more recently, the advances in
graphics processing unit (GPU) computing, have made this
largely a concern of the past.5

In addition to elastic scattering, Monte Carlo simulations
have been made to handle the effects of absorption in much the
same way. However, to reduce the variation from run to run,
the concept of partial absorption is commonly used.4,6 This

allows the photon packet to be partially absorbed by defining a
photon weight that is reduced as the photon packet propagates
through the medium. Ultimately, when the photon packet’s
weight is reduced below a threshold value, a Russian roulette
process is used to eliminate the photon packets in a way that
conserves energy.4

Furthermore, Monte Carlo simulations have been extended
to investigate other linear effects such as fluorescence7−10 and
spontaneous Raman scattering.11−14 Various methods have
been used to accomplish this, but the ones most in line with our
present approach define an appropriate probability law (Beer’s
law in the case of linear effects), which describes the probability
of a photon packet to undergo a certain process in a given step.
Traditionally, it is thought that the diffusion of light in a

turbid media renders nonlinear effects unimportant. The recent
discovery of random Raman lasing shows that this is not the
case when intense pulses of light are used.15,16 Other notable
advances, involving wavefront optimization hint at the
possibility of being able to focus light to a smaller region
inside a turbid environment, further elucidate the need for a
better understanding of nonlinear optics in the presence of
scattering.17,18 In addition to random Raman lasing, nonlinear
Raman effects offer the possibility for noninvasive label-free
biomedical sensing and imaging deep in tissue.19−24

To date, the only nonlinear effect to be considered by Monte
Carlo techniques is multiphoton fluorescence.25−27 These
simulations rely on the computation of a linear response
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function for the medium. This is computed by propagating a
point source of photons, considering only absorption and
elastic scattering, through the medium and keeping track of the
photon density throughout the medium. The linear response
function is then convolved with the pulse to be considered, and
the effects of fluorescence are computed from the intensity
distribution. This approach works well so long as the nonlinear
effect remains weak and temporal dynamics can be ignored, as
is often the case with multiphoton fluorescence. However,
stimulated Raman scattering (SRS) is an instantaneous effect
making transient dynamics important. Additionally, due to the
presence of exponential gain SRS can saturate the pump pulse,
making the assumption that the nonlinear effect does not effect
the distributions of photons in the medium a poor one. Thus,
in order to accurately describe the effects of SRS a new
approach is required.
In this paper, a nonlinear Monte Carlo (NLMC) model for

SRS is presented. The nonlinear effects are treated by deriving
probability laws for a pump photon packet to be converted to a
Stokes or anti-Stokes photon packet, which depend on the local
density of photon packets. By treating the problem in this
fashion, secondary effects such as pump depletion are
automatically taken into account. This process is quite general
and allows for generalization to other nonlinear effects. The
model is then validated using both analytical and experimental
results. In addition, the derived probability law is related back
to physical parameters through comparison with one-dimen-
sional propagation equations.

■ RESULTS

Model. The nonlinear Monte Carlo method presented here
is based on a standard Monte Carlo multilayer (MCML)
method.4 For the sake of clarity and completeness, we will
summarize the parts of the traditional MCML model that were
used here.
To simulate nonlinear effects, such as SRS, knowledge is

required of each photon packet’s position at a given time. To
include time resolution into the simulation, a global time step,
Δt, is defined. Each photon packet is propagated independently
during a single global time step. However, at the end of each
time step, all the photon packets must be stopped and
synchronized with each other. When the photon packets are
synchronized, the photon densities required for treating SRS
are computed. These photon densities are then used to
calculate the nonlinear photon dynamics throughout the next
global time step. This method allows for highly parallel
computation and is subject only to the constraint that the
photon packets cannot move far enough during a single global
time step that they significantly alter the photon density.
Samples with high elastic scattering are perfect from this
standpoint, as multiple elastic scattering results in a speed of
energy diffusion, which is slow compared to the speed of light,
allowing a more course global time steps to be used without
sacrificing accuracy. Once the combined weight of all the
photons remaining in the simulation falls below a given
threshold, for all simulations here this threshold is 0.001% of
the initial weight, the simulation is terminated.
Initial Conditions. Pulses of light are initialized outside the

turbid medium and formed by assigning (x, y, z) coordinates to
N photon packets which satisfy the profile of the desired pulse.
The simplest such pulse to consider would be a pulse that is
incident on the sample that has both a Gaussian spatial and

temporal profile. In this case, the initial distribution function of
the pulse is given by
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where c is the speed of light in a vacuum, δτ is a delay that is
assigned to keep the pulse out of the turbid medium at the start
of the simulation, σr is the standard deviation in both the x and
y directions, and στ is the standard deviation in the t direction.
The 1/e2 width of the beam relates to the standard deviation by
w = 4σr and the full-width at half-maximum pulse length is
related by Δτ = 2(2 ln(2)στ)

1/2. The front surface of the sample
is always taken to be the z = 0 plane. To sample a Gaussian
distribution with a uniform pseudorandom number generator,
the Box-Mueller method was used.28 This produces two
independent normally distributed random numbers, χ1 and χ2,
from two independent uniform random numbers, ξ and η,
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In addition to Gaussian distributions, arbitrary distributions can
be sampled by integrating and then inverting the following
equation for χ:

∫ ρ ξ=
χ

x x( )d
a (6)

Here, a represents the minimum value of the independent
variable of the distribution, and ξ is a uniformly distributed
random number between 0 and 1. In order to allow arbitrary
distributions to be handled, eq 6 must be numerically solved. In
our implementation, the numerical integration is accomplished
using Simpson’s method29 and Brent’s method for the
numerical inversion.30 This produced a stable and reliable
method for generating arbitrary distributions.
In addition to prescribing the initial positions of the photon

packets, the initial direction must also be specified. In the most
simple case of a collimated beam normally incident on the
sample, the direction vector would be identical for all photon
packets and be given by v = ⟨0, 0, 1⟩. A focusing pulse can also
be simulated by way of a coordinate transformation from
collimated space to focusing space. To start, we initialize the
photon packets as if there was no lens present giving each
photon packet its collimation space location, r = ⟨x, y, z⟩. Then
the focusing space coordinates for that particle are given by
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Here d0 is the diameter of lens, and ψ is the angle that the
focusing cone makes with the propagation axis, given in terms
of the numerical aperture by ψ = sin−1(NA). The direction
vector of these focusing photons is v′ = −r′/|r′|. After the
velocities are assigned, the depth of focus, zf, can be assigned by
a further translation, z′ → z′ + zf. It should be noted that wave
effects like the diffraction limit are neglected by this approach.
However, in the presence of scattering, this is not a major
concern as the pulse will be sufficiently scattered prior to
reaching a nonphysical, subdiffraction limited size.
The target sample is composed of different layers. Each layer

is described by a set of parameters which determine the optical
properties of that layer. These parameters are the index of
refraction, n, the elastic scattering coefficient, μs, the anisotropy
factor, g, the absorption coefficient, μa, the Raman scattering
coefficient, μR, the SRS coefficient, μSRS. For the purpose of
including reflection and refraction at the surface, the medium
surrounding the sample is given an index of refraction, n0, and is
assumed to have no scattering or absorption.
Elastic Scattering. The distance a photon travels between

scattering events is described by the exponential distribution

ρ μ= μ−d e( ) d
s

s (10)

where μs is the elastic scattering coefficient. Using eq 6, the
dimensionless distance a photon travels to its next elastic
scattering event is given by

μ ξ ξ= = − − = −s d ln(1 ) ln( )s 1 1 (11)

where the last step makes use of the symmetry of a uniform
random number, ξ1, around 0.5. Once s is assigned, the
dimensionless length to the next boundary is calculated by
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Here, zb − z is the distance along the z-axis from the photon
packet to the nearest boundary that the photon will hit, μs is the
elastic scattering coefficient in the region the photon packet is
currently in, and vz is the z-component of the photon packet’s
direction vector. Next, to keep the photons synchronized, we
must calculate the dimensionless length that the photon will
travel in the current global time step
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Here, c is the speed of light in vacuum, n is the index of
refraction of the current region, and i is the counter that keeps
track of the number of global time steps which have elapsed.
Thus, iΔt − t is a measure of how much time is left before the
next synchronization. It is useful to define the dimensionless
distance the photon packet will travel before it elastically
scatters, encounters a boundary, or must pause to be
synchronized with the other photon packets to be Δs
If st is less than either s and sb, then Δs = st, and the photon

packet will move in a straight line until the next
synchronization. It will then wait for all other photon packets
to reach this point before continuing. The new positions of the
photon packet are given by

μ
′ = + Δs

r r v
s (14)

If s is less than either sb and st, then Δs = s and the photon
packet will move in a straight line to its next scattering event,
using eq 14, where it will get a new direction vector, v′, given
by31
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In the case where |vz| = 1, these equations reduce to

θ ϕ′ =v sin( ) cos( )x (18)
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The scattering angle, θ, is given by the Henyey-Greenstein
distribution function,

θ
ξ

= + −
−

− +

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥g

g
g

g g
cos( )

1
2

1
1

1 2
2

2

2

2

(21)

Here, ξ2 is a uniform random number between 0 and 1. In the
case of isotropic scattering, the anisotropy factor, g = ⟨cos(θ)⟩
= 0 the Henyey-Greenstein distribution reduces to cos(θ) = 2ξ2
− 1. Scattering is assumed to be symmetric about the z-axis,
thus, the azimuthal angle is simply

ϕ πξ= 2 3 (22)

where ξ3 is another uniform random number between 0 and 1.
If sb is less than either s and st, then Δs = sb, and the photon

will move in a straight line to the nearest boundary, using eq 14,
where it will undergo reflection or refraction in accordance to
Fresnel’s and Snell’s laws. When a photon packet is incident on
a boundary, either between two sample layers or between one
layer and the background medium, Fresnel’s law is applied to
determine the probability of the photon packet reflecting off
the boundary. If the index of refraction of the region that the
photon is currently in, no, is larger than the index of refraction
of region the photon is trying to transmit to, nn, and the angle
of incidence, αi, is such that αi > sin−1 (nn/no), then total
internal reflection occurs and the photon is assigned a
probability of reflecting of R = 1. When these conditions are
not fulfilled, the probability that the photon packet reflects at
the boundary is given by Fresnel’s law,
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The transmission angle is determined by Snell’s law

α α= −
⎡
⎣⎢

⎤
⎦⎥

n
n

sin sin( )t i
1 o

n (24)

ACS Photonics Article

dx.doi.org/10.1021/ph5003522 | ACS Photonics 2014, 1, 1322−13291324



The photon packet then transmits at the boundary with the
refracted angle αt, if R > ξ4, where ξ4 is a uniformly distributed
random number between zero and unity, otherwise the photon
packet is reflected with the new direction v′ = ⟨vx, vy, −vz⟩.
Once one of these three outcomes have occurred, the

dimensionless distance remaining until the photon elastically
scattered is updated using s = s − Δs. When s = 0, eq 11 is used
and a new dimensionless distance to the next elastic scattering
event is assigned and the process is repeated until the
simulation terminates.
Absorption. Absorption is treated using the Russian

roulette method.4,6 In this technique, each photon packet is
assigned a weight, typically equal to unity to start. When a
photon travels a distance of Δs, the photons new weight, w′, is
given by

′ = μ μ− Δw e ws( / )a s (25)

Once the photons weight shrinks below a threshold value, wt,
the photon has a probability of p of being removed from the
simulation. In our work, we set wt = 10−6 to minimize the error
incurred from this simplifying approximation. If the photon
survives, it is given a new weight of w′ = (1/p)w and continues
to propagate in the simulation. This has been shown to be a
viable method of accurately simulating the effects of absorption
while decreasing the variance of the simulations.6

Spontaneous Raman Scattering. Spontaneous Raman
scattering is a linear process just like elastic scattering and
absorption, thus it can be treated in a similar manner. The
probability that a pump photon undergoes spontaneous Raman
scattering over a dimensionless distance Δs is given by

= − β μ− ΔP e1 s
R

( / )R s (26)

If a uniform random number ξ5 < PR then the photon is
converted into a Raman photon. Raman scattering is assumed
to be isotropic, thus the new direction vector is given by eqs
18−20 with the scattering angles given by

θ ξ= −cos( ) 2 12 (27)

ϕ πξ= 2 3 (28)

Multiple orders of Raman scattering could be treated; however,
in our simulations, we neglect these higher order Raman
processes.
Stimulated Raman Scattering. To treat SRS in the

simulation, we must have knowledge of the distribution of
Raman scattered photons. This distribution is computed by
assigning a grid of voxels to the computational domain then
summing up the weight of each Raman photon located in each
bin. This is computed only at the end of each global time step;
thus, the global time step itself must be chosen small enough
such that the photon distribution does not undergo large
changes during the course of a single time step. The probability
that a pump photon undergoes a SRS process is given by

= − β μ− ΔρP e1 s
SRS

( / )RSRS s (29)

Here, ρR is the local Raman photon packet density. This is
computed by summing the total weight of Raman photons in
the same voxel and then dividing by the volume of the voxel.
The new direction is taken to be the weighted average of the
direction vectors of Raman photons in the same voxel.
Validation. To ensure the basic elastic scattering and

absorption dynamics of NLMC are working properly, the

reflection and transmission coefficients obtained with the
NLMC simulation are compared to previously obtained
analytical results and previous Monte Carlo simulations for
an index matched sample.4,32 The sample considered was 0.2
mm thick with a scattering coefficient of μs = 9.0 mm−1,
anisotropy factor of g = 0.75, and an absorption coefficient of μa
= 1.0 mm−1. A total of 25 pulses, each containing 106 photon
packets, were averaged together to produce the results shown in
Table 1.

To validate the treatment of index mismatched boundaries,
an index mismatched semi-infinite slab was chosen as a second
example. The slab was given an index of refraction of n = 1.5
compared to the background index of n0 = 1.0. Scattering was
assumed isotropic (g = 0) and a scattering coefficient of μs = 9.0
and absorption coefficient of μa = 1.0 were used. The excellent
agreement with previous results are shown in Table 2. These
results were averaged over 25 pulses each containing 106

photons.

To validate the NLMC model for SRS, we will compare the
simulation results to previous experimental work on random
Raman lasing in barium sulfate (BaSO4) powder.15 These
results illustrated in Figure 1 demonstrate the excellent
agreement between the NLMC model and experimental
results. The sample used in the simulation was 5 mm deep
with an index of refraction, n = 1.6, an anisotropy factor, g =
0.6, a scattering coefficient, μs = 200 mm−1, an absorption
coefficient, μa = 0.1 mm−1, a spontaneous Raman coefficient, βR
= 5 × 10−4 mm−1, and a stimulated Raman coefficient, βSRS =
1.5 × 10−5 mm2. The global time step was set to Δt = 0.1 ps
and the bin size was set to d = 0.02 mm. A single incident pump
pulse with a full-width at half-maximum pulse width of 50 ps
and a 1/e2 beam diameter of 1 mm was sent into the sample,
and the Raman weight exiting the sample in the reflection
geometry was totaled. To generate the different pump energies,
the number of pump photon packets simulated was varied over
a range from 104 to 2 × 105. For each pump energy, 20
independent runs were computed.

Density of Raman Scattering Centers. In addition to
exploring the efficiency of random Raman lasing, using the

Table 1. Comparison of an Index Matched Sample
Containing Elastic Scattering and Absorption with Previous
Analytical Solutions and Monte Carlo Simulations4,32,33,a

source reflection transmission

van de Hulst, 1980 0.09739 0.66096
NLMC 0.09734 ± 0.00023 0.66104 ± 0.00028
Wang et al., 1995 0.09734 ± 0.00035 0.66096 ± 0.00020
Doronin et al., 2011 0.09741 ± 0.00027 0.66096 ± 0.00017

aThe uncertainty given represents the standard deviation.

Table 2. Comparison of an Index Mismatched Sample
Containing Elastic Scattering and Absorption with Previous
Analytical Solutions and Monte Carlo Simulations4,34,33,a

source reflection

Giovanelli, 1955 0.2600
NLMC 0.25993 ± 0.00029
Wang et al., 1995 0.25907 ± 0.00170
Doronin et al., 2011 0.25957 ± 0.00043

aThe uncertainty given represents the standard deviation.
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NLMC simulation, we can look at the distribution Raman
scattering centers in the medium. The distribution of Raman
scattering centers is something that can provide insight into
random Raman lasing but cannot be experimentally measured.
Figure 2 shows the distribution of locations where a Raman

photon is converted from a pump photon, known as a Raman
scattering center. The parameters used were the same as above.
Each graph is normalized by the number of pump photons.
What is observed here is that the vast majority of Raman
photons are generated in a relatively thin region of the sample,
and are not the result of long path length photons. This
supports the conclusion that the majority of the random Raman
lasing signal is generated near the surface of the sample where
pump intensity is largest. This is in contrast to a more steady
state picture where longer photon paths would experience more
gain. In this transient regime picture the NLMC simulations
suggest that as these long path length photons continue to
travel through the medium disorder induced pump depletion
occurs, leading to a lower gain at later times.35 The net result of

this process is that photons trajectories, which are present
where pump intensities are greatest, are the ones most likely to
contribute to random Raman lasing, and these photons need
not be the ones with very long trajectories.

Scattering and Absorption Dependence. One of the
most difficult properties to measure with random Raman lasing
is its dependence on scattering. To date, random Raman lasing
has only been observed in fibers and powders, and neither of
these systems offer the chance to experimentally vary the
scattering and absorption properties of the medium. Some
variation of the scattering coefficient would be possible in
powders by pressing the sample with a known pressure, but at
some point, the particles will begin to make optical contact and
will stop behaving like individual particles and will behave more
like agglomerate particles.
While the dependence of SRS on scattering and absorption is

difficult to experimentally realize, it is ideally suited for
investigation with Monte Carlo simulations. The results are
shown in Figure 3. All the parameters for these runs are the

same as those used above except for the scattering and
absorption coefficients. The pump energy was set to 200000
photons to correspond to the largest value used in the
comparison with experiment. A clear threshold for the
scattering coefficient can be seen, and this value depends on
the absorption coefficient. Both, the threshold and the decrease
in the random Raman emission at higher scattering coefficient
can be understood by the fact that scattering is both providing
feedback as well as determining the excitation volume. At low
scattering, there is insufficient feedback to support gain. When
scattering becomes large there is sufficient feedback, but a
smaller volume of the sample is excited because the pump tends
to be localized near the surface of the sample. The smaller
excitation volume decreases the efficiency of the process
resulting in a decrease in signal for higher scattering. These
conclusions are further supported by the large decrease in the
signal due to absorption near the optimum scattering
coefficient. Absorption limits the size of the excitation volume,
shifting the most efficient scattering coefficient toward higher
scattering, and decreasing the total emission, even for the rather
small absorption coefficients used here.

■ DISCUSSION
The probabilities used to describe the various Raman effects in
the NLMC simulation can be derived from the one-dimen-

Figure 1. NLMC simulations compared with experimentally measured
threshold data for random Raman lasing.15 The error bars shown
represent the 7% uncertainty in the measurements of the energy meter
used and the results are the average of 20.

Figure 2. Density of Raman scattering centers for (a) 110000, (b)
140000, (c) 170000, and (d) 200000 incident pump photons.
Intensities were normalized by the number of pump photons.

Figure 3. Dependence of SRS generation on scattering and absorption
for a fixed pump intensity.
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sional equations governing the evolution of the intensity. Take
for example the simplest case of spontaneous Raman scattering.
In one-dimension, the intensity of Raman photons can be
described by

μ=
I
z

I
d
d

R
R p (30)

In between scattering events, a photon packet will travel in a
straight line, thus, eq 30 describes the dynamics of a photon
packet where we take the z-axis to be the direction of
propagation for that photon packet. We can integrate eq 30
over the distance that it travels in its current step

∫ μΔ =
μ+ Δ

I I zd
z

z s

R

( / )

R p
0

0 s

(31)

Under the assumption that this step size is small (not larger
than (c/n)Δt), we can assume that the pump intensity remains
constant over this small distance, thus

μ μΔ ≈ ΔI s I( / )R R s p (32)

These intensities can be put in terms of photon densities using
the relation Ii = ηℏc(ωi/ni)ρi, where i represents pump, p, or
Raman, R, signals, respectively, and η is the number of photons
represented per photon packet. With this, eq 32 can be
rewritten in terms of the photon densities,

ρ μ ω ω μ ρΔ = Δn n s( / )( / )( / )R R p R R p s p (33)

This equation has the physical interpretation that μR(ωp/
ωR)(nR/np)(Δs/μs) is the probability that a pump photon is
converted to a Raman photon. To improve the behavior of this
probability, we can make use of the fact that this is small to
write

ρ ρΔ = − μ ω ω μ− Δe(1 )n n s
R

( / )( / )( / )
p

R p R R p s
(34)

Now, if we write

β μ ω ω= n n( / )( / )R R p R R p (35)

the probability that a pump photon packet will convert to a
Raman photon packet in a given step will be given by

= − β μ− ΔP e1 s
R

( / )R s (36)

which is identical to eq 26.
The same method can be used to describe the more

complicated nonlinear effects of SRS. In one-dimension, the
Raman signal due to SRS is described by36,37

=
I
z

GI I
d
d

R
p R (37)

where G is the Raman gain coefficient given by38,39

π ω ω δω
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c N
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2

R
2
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Here, ΔN is the population density (containing any thermal
distributions of states) of the molecular species leading to the
gain, nR is the index of refraction at the Stokes frequency, ωR is
the Stokes frequency, ωp is the pump frequency, δωR is the
Raman line width, and ∂σ/∂Ω is the Raman cross-section.
Following the same procedure used for spontaneous Raman,
we end up with

ρ ρΔ = − η ω ρ μ− ℏ Δe(1 )G c n
R

( / ) ( / )
p

sp p R s
(39)

Comparing this with eq 29, we can see that our SRS coefficient
relates to the Raman gain by

β η ω= ℏG c n( / )SRS p p (40)

Monte Carlo simulations are notorious for being computa-
tionally demanding because large numbers of photon packets
must be simulated to obtain accurate dynamics. In a traditional
Monte Carlo scheme such as MCML, these photon packets can
travel independently indefinitely. What we mean by this is that
each photon packet does not require any knowledge about any
other photon packets in the simulation. This makes Monte
Carlo simulations trivially parallelizable and ideal for the
massive computational power of modern day GPUs.40,41

In NLMC, this is no longer the case. Due to nonlinear
interactions, the photon packets require information about the
distribution of other photon packets. This requires all parallel
threads to stop, calculate the photon densities, and synchronize
information. This reduces the level of parallelism; however, the
NLMC code still receives an enormous speed enhancement
when run on GPUs. On our system, the GPU version of the
code was able to run simulations consisting of 106 photon
packets in just a few minutes. This run time is comparable to
simulations using the CPU version of the code with only 104

photon packets. These simulations were run using double
precision accuracy on a system that consisted of an 3.4 GHz
quad core CPU (Intel; i7−2600K) with 16 GB of RAM and a
GPU (NVIDIA; GeForce GTX 560 Ti).
At the heart of the NLMC model is the calculation of time-

resolved photon densities. The method we implemented to
accomplish this is a bin sorting method. Each photon packet is
sorted into bins and their weight is summed giving a measure of
the photon density. This is readily parallelizable and fast;
however, because a large grid must be stored, it requires a large
amount of memory. On our system, GPU memory is the
limiting factor to the number of photons that we can run in a
single simulation. The NLMC method could be programmed in
a way that this is not the case; however, there would likely be a
substantial degradation in performance due to the relatively
slow speed at which memory is transferred to the GPU.
In condensed matter, the Raman coefficient is typically on

the order of 10−7 mm−1.36 With our current implementation,
we are limited to a few million photon packets per pulse. With
an increase in GPU memory and further optimization, it is
reasonable to expect that tens of millions of photons would be
possible in a reasonable amount of time. However, this is still
barely approaching the level where only a few photon packets
undergo spontaneous Raman scattering. Because of this
computational limitation, previous Raman Monte Carlo
simulations have simply taken βR to be artificially large.31,42

This is justified by the fact that when only spontaneous Raman
effects are present βR simply contributes a multiplicative factor
on the amount of Raman generated (provided pump-depletion
does not become a problem). This breaks down in the presence
of SRS. When SRS effects are present, the value of both βR and
βSRS play a role in the dynamics of the simulation. This can be
seen in Figure 4. In practice, this does not appear to be as large
of a problem as one would suspect. Figure 1 serves as an
example of the accuracy of the method even with an
unphysically large βR.
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While not explicitly included in the derivation of the
probabilities used in the NLMC simulations, pump depletion
is taken into account in the simulation itself. The process of
converting pump photon packets into Raman photon packets
removes energy from the pump field, reducing the probability
of later photons converting. Thus, the mechanics of the
simulation process itself take care of pump depletion effects. It
should be noted, in any single global time, step pump depletion
effects are ignored because the photon densities are not
updated during this time. Thus, care should be taken not to use
a large time step when the simulation is in the strong saturation
regime.
In the NLMC simulations, there are two parameters that

control the accuracy of the simulations when nonlinear effects
are present, the global time step, Δt, and the photon density bin
size, d. In practice, these two should be matched such that
during a global time step the motion of a single photon packet
does not substantially change the photon densities needed to
calculate the nonlinear probabilities. To ensure this is the case,
we simply require (c/n)Δt ≤ d, where in this case n is taken to
be the smallest index of refraction of all the layers.
To generate the random numbers for our implementation, a

Hybrid Tausworthe generator was used.43 This generator has
the advantage of being faster and requiring less memory than a
Mersenne twister method,44 while still providing a period
greater than 1036. To generate these numbers in parallel each
photon packet is assigned its own set of four initial seeds
generated using the built-in random number generator, which is
itself seeded with the current time, ensuring each run is
independent of the last.
In the current NLMC code, only SRS is considered;

however, the concept of introducing intensity dependent
coefficients by way of computing the photon density is not
limited to just these effects. This idea can be generalized in a
straightforward manner to handle other nonlinear effects like
absorption saturation, second and third harmonic generation,
coherent anti-Stokes Raman scattering (CARS), and so on.
Additionally, higher order Stokes and anti-Stokes processes can
be treated by allowing Stokes photons to undergo additional
Stokes processes.45

In the treatment here, we have assumed that each wavelength
propagates through the simulation using the same optical
properties. Wavelength-dependent properties could easily be

implemented by defining a new set of optical properties for
each type of photon and keeping track of this throughout the
simulation.
It is important to note that, while this technique shows

excellent agreement with experimental data, it neglects the wave
nature of light. All phase matching conditions are automatically
satisfied for SRS. Thus, it is not a coherent wave mixing
phenomena, but is more closely related to stimulated emission,
where the newly created photon’s phase depends only on the
phase of the stimulating photon and not on the phase of the
pump photon. However, the generated intensity does not
depend on the phase of the stimulating photon. In other words,
the process has the same probability of occurring, regardless of
this phase.
Currently, there are no methods capable of accounting for

the wave effects of light propagation in turbid media in the
presence of nonlinear optical effects. However, for very simple
systems, finite difference time domain (FDTD)46 methods
might be possible, but this approach is ultimately limited by the
requirement that the location of each scattering particle must
be known. Additionally, extending the probabilistic approach of
describing SRS employed here to electric field Monte Carlo
(EMC) simulations47−49 exists, but such methods still treat
light as local particles with definite direction instead of waves
that do not have a well-defined direction.
Here we have presented a method for including nonlinear

effects into Monte Carlo simulations, specifically SRS. The
ability to include these effects in Monte Carlo simulations will
allow for a better understanding of the nonlinear dynamics of
light in a turbid media, advancing fields such as nonlinear
microscopy of biological tissues and increasing our under-
standing of new fundamental effects, such as random Raman
lasing.
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